

BERINGER MATERIAL SCIENCE

Dear customer!

The great variety of steel grades and brands often creates confusion when it comes to choose a suitable container. Therefore we would like to give our customers a short overview of different steel grades, labeling and material properties.

General Definitions

Yield stress

the yield stress indicates the tension until the material doesn't show any persistent distortions.

Labeling R_{eH}

unit: N/mm² or MPa

Tensile strength

represents the tension when material is cracking.

Labeling R_m unit: N/mm² or MPa

Hardness

in general hardness is the mechanical resistance of material against ingression of a block. Hardness is measured by pressing a reference block into the steel and the persistent pit is evaluated. A common method for measuring hardness is the "Brinell Method". The unit is HBW (W stands for tungsten carbide, because the material is tested with a bullet made of tungsten carbide).

High-grade steel

Application

high-grade steel is used for construction of products and product parts which are made for regular use e.g. skips and bins.

Labeling

e. g.	S 235 JR + N (acc. to EN 10025-2)	S 355 MC (acc. to EN 10149-2)
meanings		
Steel:	S	S

min. yield stress:	235 N/mm ²	355 N/mm ²
impact strength:	JR: ambient temperature	(- 20° C)
heat treatment:	N: normalized	M: rolled thermo-mechanically
cold workability:	-	С

Our labeling

we label high-grade steel according to EN 10025-2 or EN 10149-2 without further information about impact strength or other mechanical properties.

High tensile steel

High tensile steel is steel with a minimum yield stress higher than 355 N/mm². Due to manufacturing methods, high tensile steel has a high mechanical load capacity and it's material usage can be reduced in comparison to high-grade steel at same load capacity.

Application

we use high tensile steel for products and product parts which are made for heavy duty use. E. g. top edge profiles and Ro-Ro containers for transport of heavy goods as well as light variation Ro-Ro containers.

Labeling

currently it is common to label high tensile steel with a brand name and it's yield stress.

e.g. DOMEX[®] 460 MC is a brand name of SSAB. The high tensile steel has a min. yield stress of 460 N/mm² M means "rolled thermo-mechanically", C means "special cold workability"

The labeling for DOMEX[®] 460 MC according to EN 10149-2 is S 460 MC.

(former: QStE[™] 460).

Our labeling:

we label high tensile steel according to EN 10149-2.

High tensile steel

Product advantages achieved by using high tensile steel:

Container weight can be reduced by keeping equal load capacity – due to higher yield stress of high tensile steel.

The 'weight reduction achieved by using high tensile steel can be calculated by the following formula:

$$h = b \sqrt{\frac{Stb}{Sth}}$$

h =	thickness high tensile steel
b=	thickness high-grade steel
Stb=	yield stress high-grade steel
Sth=	yield stress high tensile stee

How much of material thickness can be reduced by using S 460 MC instead of S 235 JR (5mm)?

$$h = 5 mm \sqrt{\frac{235 N / mm^2}{460 N / mm^2}} \qquad \longrightarrow \qquad h = 3.5 mm$$

By using S 460 MC instead of S 235 (5 mm) the thickness of steel plates can be reduced by 1,5 mm to a S 460 MC (3,5 mm) at equal load capacity.

Wear-resistant steel

wear-resistant is steel with special wear properties due to it's hardness. This extreme hardness resulting of high yield stress and tensile strength leads to high elastic recovery characteristics.

Application

we use wear-resistant steel for products and product parts which are made for extreme heavy duty use. E.g. bottom sections of headers and Ro-Ro containers for extreme heavy duty use (e.g. for transport of scrap or demolition waste).

Labeling

currently it is common to label wear-resistant steel with a brand name and the HBW data.

e.g.

HARDOX[®] 450 is a trademark of SSAB. The plates have a hardness of 450 HBW. (the is no official labeling for wear-resistant steel)

Our labeling

in order to avoid brand names we label wear-resistant steel with:

"wear-resistant steel" and it's hardness..

e.g. HARDOX[®] 450 = wear-resistant steel 450 HBW

Wear-resistant steel

Product advantages achieved by using wear-resistant steel

- Less buckling, because impact loads are absorbed by material.
- Empty weight of product can be reduced at equal load capacity, due to high yield stress of material.
- Easy refurbishment of products possible because of good processing characteristics of wearresistant steel.
- Long life-time cycles due to wear resistance of steel.

Overview – selected steel grades and branded materials

Material	Yield stress [N/mm²]	Tensile strength [N/mm²]	Hardness [HBW]
S 235 JR	235	360 - 510	approx. I 30
S 355 MC	355	430 - 550	approx. 150
DOMEX [®] 460 MC ¹⁾	460	520 - 670	approx. 180
DOMEX [®] 700 MC ^{I)}	700	750 - 950	approx. 250
HARDOX [®] 450 ²⁾	1200	1400	450
RAEX [®] 450 ³⁾	1200	1450	450
XAR [®] 450 ⁴⁾	1200	1400	450
Brinar [®] 450 ⁵⁾	1200	1500	450

1) DOMEX[®] is a brand name of SSAB.

2) HARDOX[®] is a brand name of SSAB.

3) RAEX[®] 450 is a brand name of Rautaruukki Oyj. RTRKS.

4) XAR[®] 450 is a brand name of Thyssen- Krupp Steel Europe.

5) Brinar[®] 450 is a brand name of Ilsenburger Grobblech GmbH.